
API Documentation Plan

Objective
The Digital Farming Platform (DFP) application programming interface (API) offers standardized access
to digital farming functionality and data. Since developers discover and use APIs by way of their
documentation, the DFP dev portal must supply practical, versatile content that helps users exploit the
company’s rich data assets to create novel products and services.

Goals of the Portal
● Describe the DFP API’s features
● Explain the DFP API’s functionality
● Prevent support issues from escalating
● Help users access Bayer’s data assets
● Ensure a satisfying developer experience (DX)
● Encourage and inspire innovation

General Info
Project: Comprehensive developer documentation portal for the Digital Farming Platform API, v 1.1.1
(2019-07-22). The spec is encoded using OpenAPI 3.0.2.

URL: The content now available at the FieldView developer site will be replaced with the new Digital
Farming Platform dev portal when it’s completed.

Schedule: The DFP will be rolled out according to this schedule (2019-2020).

Core DFP API Team:

● Redacted, Principal Engineer (execution)
● Redacted, Sr. Staff Engineer (data modeling)
● Redacted, Principal Engineer (data modeling)
● Redacted, Group Program Manager (management)
● Redacted, Sr. Director of Engineering (quality)
● Melissa Kinsey, Sr. Technical Writer (documentation and DX)
● Redacted, Digital Strategy Manager (UX)
● Redacted, Global Brand and Acquisition Director (global branding and marketing)
● Redacted, [Title?] (enterprise partner engagement)

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 2

Target Audiences:

The DFP will be useful to several types of clients:

● Bayer engineers
● Internal devs and data scientists
● Platform partners
● Future private-sector enterprise partners
● Public-sector users (for example, the U.S. Department of Agriculture [USDA])

Field Guide User Interface
We propose calling the collective documentation a “Field Guide to the DFP.” (For SEO purposes, we
can still use the word “portal” in the page metadata and “dev” in the URL.) CapitalOne does something
along these lines with its DevExchange portal:

Although Atom isn’t an API, its Flight Manual is conceptually similar.

The DFP portal will have an inviting UI, tidy use cases to point devs
toward the right content, solutions to common problems, and plenty of
code samples devs can copy and customize for their own needs.

All documentation will conform to the DFP API schemata, conventions,
and patterns. Until full design specs are available, we’ll use the
document specs outlined at go/dfp-doc-style. We’ll follow the word
style documented at go/list.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 3

Our UI vendor will use the idea of a vintage field guide as the inspiration for font selection, color palette,
and graphics. This theme will work well with the
agriculture domain.

Of course, the portal UI must be uncluttered, and it
must be consistent with Bayer’s corporate identity
and with the FieldView branding. But it need not be
identical, since the dev portal targets a different
demographic than the FieldView product.

Developer Experience (DX)

CONTRACT-FIRST APPROACH

The Field Guide to the DFP will offer a peak
developer experience, allowing efficient discovery
and use of REST [representational state transfer]

API resources and functionality. To that end, we’re taking a contract-first (a.k.a. “design first”) approach
to the API. That means framing the API contract before writing the corresponding code. This approach
requires more planning and resources but offers several crucial advantages:

● Product focus. The contract-first approach treats the API as a product, with the consumer of
that product—the developer—at its center.

● Developer-centric decision making. A contract-first philosophy shines the spotlight on the
concerns of our developers, who in turn are trying to meet the needs of their respective
customers.

● Domain-centric thinking. A contract-first approach also helps us keep the unique demands of
the digital agriculture domain in mind. Seasonal tasks, weather, and perishability are irrelevant
to consumers of the Edmunds API or the Stripe API, for example, but they’re of paramount
importance to our developers and their customers.

USABILITY

In addition to architecting the content intuitively and making it visually appealing, the Field Guide to the
DFP must offer the kind of straightforward navigation users expect from any well-designed platform. If
the user has to consult the documentation just to get oriented, we’ve done something wrong.

We must keep the developer in mind at every turn. Usability doesn’t mean showing devs how the DFP
works—it means showing them how it could work for them. A good DX will inspire DFP users to
explore, imagine, and invent.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 4

Navigation

The dev portal will have left-sided navigation, with layered accordion menus that allow users to drill
down several (probably no more than three) levels. The menu options should be dynamically
highlighted—that is, when a user mouses over a menu, the items should change color or move. When
selected, an item should respond in some other way. The right side of the portal should be filled with
relevant code samples. Users will be able to tab from one language to another to see code samples in
their preferred language. These samples will be linked to more verbose code housed in a gist.

Accessibility of the portal documentation must be prioritized from the beginning (see Accessibility).

The dev portal will be equipped with context-sensitive search filters, some of which can be combined,
allowing users to narrow their results in several ways. For example, the following filters might be useful:

● By relevance
● By date or season
● By popularity
● By software language (Java, Javascript, Scala, and Python)
● By GPS coordinates or some other geographic filter
● By use case, such as tilling, planting, scouting, harvesting
● Perhaps by other parameters, such as most commented

Accessibility

The portal documentation must be accessible to all users. Not only is it good practice to bake in
accessibility, but such features may be required for government adoption of the DFP.

We’ll follow the recommendations outlined in the Web Content Accessibility Guidelines 2.1 unless
there’s a compelling business reason to depart from them. For example, video tutorials will be
captioned, and downloadable transcripts will be available. Text will be scalable. Navigational elements
will be consistent, but persistent navigation will be optional. Images and other elements will be
accompanied by metadata, labels, cues, instructions, tags, or other identifiers. Observing these and
similar accessibility guidelines improves SEO and enhance the DX for all users. Please see WebAIM for
a helpful accessibility checklist.

Localization

Adaptation of the DFP content to a specific locale or market might include language translation, unit-
of-measure conversion, time zone adjustment, or additional formatting options to accommodate
special characters, such as the umlaut (ü) or scharfes S (ẞ).

In the DFP spec, properties such as name and description may be translated. Endpoints that
support localization will use the Accept-Language header field to specify the language preferred in

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 5

the response. The header will return translated content for the specified Internet Engineering Task
Force (IETF) language tag, e.g., fr, de, en-GB.

The language translations available for every entity and instance are accessible using the
/translations endpoint, which returns a filtered list of existing translations, sorted with the most
recent first. Translations can be downloaded in bulk for all languages or for a single language. If the
requested translation doesn’t exist or if no Accept-Language header is provided, the default en-US
will be returned. See the IETF standards for details.

Metrics
The Product group will track metrics like partner adoption and growth trends, monthly active users,
unique consumers, heaviest consumers, and top customers by revenue. Security engineers will monitor
calls to prevent unauthorized use by bots or other bad actors. For every endpoint/method, Test
Engineering will identify the corresponding service-level agreement (SLA) and ensure compliance with
latency restrictions, volume, error threshold, and operating limits.
 To gauge success and identify trends in the DX, we will gather data that indicate which
documentation is most heavily used, who uses it, how often each user returns, which documentation
could be supplemented, which is underutilized, and which should be deprecated:

● Traffic. Using real production traffic, Test Eng will run preliminary integration tests, such as
regression tests and API contract tests, as well as postdeployment performance checks, to
validate availability and assess performance. Metrics above and below the gateway will be
monitored. Of particular interest for documentation, for example, is call count. A relatively low
number of calls suggests that either developers are quickly finding the info they need, or the API
is so unwieldy that devs bounce after just a few transactions. Analysis of other metrics, such as
developer satisfaction, can clarify the situation.

● Developer satisfaction. When the DFP is deployed, we’ll ask willing users to give us feedback
on the portal and to rate the DX. This will give us a baseline against which to calibrate our
progress.

● TTHW (Time to Hello World). TTHW is a good yardstick by which to measure the ease of
onboarding. For a stellar DX, we must give devs all the tools and info they need to get rolling
quickly (see the discussion of code samples under Navigation).

Content
API SPEC

The Field Guide will contain use cases, common tasks, and tons of code samples mapped to the DFP
API specification, which identifies all API endpoints and associated HTTP methods (create, read,
update, delete [CRUD]), resource descriptions, parameters, requests and response.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 6

EXISTING CONTENT

Portions of the documents housed in the shared DFP folder can be repurposed for the Field Guide.
This content is classified as follows:

● Governance documents (planning, security, metrics, testing, communication)
● Model documents (conceptual foundations of the API)
● Reference docs (API spec and other technical reference docs)

CORE DIGITAL FARMING PLATFORM (DFP) DOCUMENTS

Governance

DFP Updates, FY19 & FY20 DFP API Specification Roadmap [DEPRECATED]

DFP API Phased Rollout DFP Engagement and Commitment Process

Cloud Transition to the DFP Testing the DFP

Model

Digital Farming Ontology Initiative Digital Farming Taxonomy

Orchestration Layer Event and State Taxonomy

Principal Abstractions Relationship Taxonomy

Prerequisite API Requirements Attribute Taxonomy

Unified Metadata Vocabulary Entity Taxonomy

Reference Types in the DFP Semantic Mapping—BCS Digital Farming Data Stores

Internationalization Language Model Guidelines for Names and Definitions

Reference

Predictions Location, Location, Location

Prerequisites Life of the Party

Seeds Seasons Data Model

It’s About Time The Measure of Success

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 7

NEW CONTENT

Quick-Start Guide
Developer onboarding resources should include at least the following:

● Registration and request for access keys
● Authentication and authorization
● Versioning
● Request and response formats
● Error codes
● Changelog
● Brief how-to’s for common tasks
● Endpoints in development (possibly with projected release dates)
● Support info
● TL;DR summaries

Code Samples
Offering lots of handy code samples linked to forkable/cloneable gists is perhaps the most important
component of the portal documentation. Code samples must be easy to find and use, so they’ll appear
in the third column, to the right of the documentation itself (see Navigation).

We can generate some of the sample code using Swagger or a similar dynamic autodocumentation
tool. This kind of tool will update the code samples whenever the source code changes. However,
autodocumented code is just a starting point. To be truly useful, the code must be available on GitHub,
annotated, and tied to video how-to’s, tutorials, wikis, tools, libraries, and other resources that help
developers get up to speed quickly (see TTHW, under Metrics).

Migration Resources
We’ll offer migration guides and crosswalks to tie existing endpoints to the new DFP environment.
These migration resources are especially important for a good internal DX.

Use Cases
We’ll develop a set of
concise use cases to
help developers find the
content they need.
Linkedin Learning’s dev
portal, for instance,
shows devs exactly what
they can do with the
LinkedIn Learning API.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 8

SDKs

The DFP API will provide software development kits (SDKs) in at least three languages: Java (which can
also be used for Scala), JavaScript, and Python.

Community Features

Developing a vibrant dev community can help promote the DFP to external partners. Community
features might include videos, a community discussion forum, a blog, links to Stack Overflow and
GitHub, and ties to other social media. We could also generate interest via Meetups, conferences,
hackathons, podcast guest slots, and other outreach activities. We should hire a full-time API
evangelist f it becomes a priority to promote external use of the DFP.

Sandbox

To encourage exploration during early development, we’ll offer DFP-in-a-Box, a stub DFP API. It’ll be a
standalone service devs can run on their own development machines. This virtual production
environment will allow engineers to make mock function calls using test data. They can thereby validate
business logic, test-drive a prototype, or just try out the DFP’s features and functionality. This
playground will give devs a chance to spot glitches and untangle snafus in a simulated ecosystem,
eliminating the risk of testing in a live environment.

Making developers’ work a bit more fluid and creative encourages community engagement and
promotes API adoption and loyalty, which may become increasingly important as external partners
discover the DFP and devise imaginative new uses for it. If you’d like to go play, check out PayPal’s
sandbox, What’s App’s sandbox, or the beloved Swagger Petstore.

Implementation
API Consumer Feedback
When we have about 30 percent of our documentation finished, we’ll recruit a group of non–DFP
engineers to try it out. We could shadow them (using contextual inquiry methodology) or use focus
groups and interviews to solicit feedback on coverage gaps, content clarity and usability, portal
navigability, visual appeal, usefulness of community features, and so on. Then we can integrate the
developers’ suggestions as we prepare the remaining documentation. We’ll solicit commentary from
internal devs as well.

Internal Communication
We’ll have semiweekly or weekly meetings to discuss portal documentation issues and keep the
documentation moving. We’re also using go/dfp, #dfp-api, and #tech-writing to communicate.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 9

Delivery

DOCS-AS-CODE APPROACH

Formatting our documentation in Markdown and storing it in a Git repo gives us great flexibility in
repurposing and rearranging content, unfettered by proprietary platforms or siloed tools.
A dfp-api-docs directory has been set up within the dfp-api repository. A README file and half a dozen
Markdown documents have been added. As of this writing (August 30, 2019), four PRs have been
approved and merged, and the remaining existing documents are being converted to Markdown and
uploaded to Git. A process has been established for new documents to be converted to Markdown and
placed in the docs directory of the dfp-api Git repo (see Document Management for DFP Documents).

VERSION CONTROL

The docs-as-code approach requires document authors to use Git for version control, just as the
engineers do. It establishes a trackable review process and lets us incorporate continuous integration
into the API documentation workflow. Document authors use the same systems and CICD pipeline the
engineers rely on, which will keep the portal documentation in sync with API development.

TECHNICAL WRITING TEAM

Melissa Kinsey, in St. Louis, manages the portal documentation. Other immediate technical writing
needs include one or more API spec writers. Two positions have been posted in Seattle.

Each writer must be familiar with the OpenAPI spec and with the tools used to document, test, and
iterate on it, such as Swagger, Postman, Atom, and Git. It’s an advantage if the writer can read code in
one or more programming languages. If not, though, he or she must be familiar with (or be able to look
up) differences in terminology and syntax among various languages.

The DFP API will require SDKs in at least three languages (see SDKs). The spec writer will document
these SDKs with overviews, release notes, code samples, tutorials, wikis, tools, and libraries.

The writer must go beyond explaining the functionality of individual components. He or she must also
document known and anticipated API use cases and illuminate the ways in which the various API
components relate to and interact with one another.

Maintenance
We will establish a process for maintaining accurate documentation (see Document Management
Policy for DFP Documents), moderating community forums, and generating new documentation as the
API expands. We’ll shape this process as we go along. For now, users can either handle changes
informally, via #dfp-api, or more formally, by submitting a PR.

API GOVERNANCE DOCUMENT Bayer Crop Science/The Climate Corporation│Digital Farming Platform

Climate Internal 10

Questions and comments about this plan are welcome.

Slack: @melissa.kinsey
Email: melissa.kinsey@climate.com

Revision History: Author(s): Document Status:

2019.08.13 v0.1 Melissa Kinsey DRAFT

2019.08.30 v0.2 Melissa Kinsey Working document

